特级黄色毛片视频片子,国产91精品高清一区二区三区,日韩中文字幕在线观看视频

游途派

游途派

您現在的位置是:首頁 > 游玩攻略 >

游玩攻略

高三數學知識點總結歸納?

發布時間:2024-06-28游玩攻略 7 次

高三數學知識點總結歸納?

基礎會計學知識點歸納

推薦度:

人民版歷史必修一知識點歸納

推薦度:

初中數學知識點總結

推薦度:

高二數學知識點總結

推薦度:

三年級上冊英語重點知識點歸納

推薦度:

相關推薦

精選高三數學知識點總結歸納三篇

總結是指社會團體、企業單位和個人在自身的某一時期、某一項目或某些工作告一段落或者全部完成后進行回顧檢查、分析評價,從而肯定成績,得到經驗,找出差距,得出教訓和一些規律性認識的一種書面材料,它可以幫助我們總結以往思想,發揚成績,讓我們一起認真地寫一份總結吧。那么你真的懂得怎么寫總結嗎?下面是小編整理的精選高三數學知識點總結歸納三篇,歡迎大家分享。

精選高三數學知識點總結歸納三篇1

符合一定條件的動點所形成的圖形,或者說,符合一定條件的點的全體所組成的集合,叫做滿足該條件的點的軌跡。

軌跡,包含兩個方面的問題:凡在軌跡上的點都符合給定的條件,這叫做軌跡的純粹性(也叫做必要性);凡不在軌跡上的點都不符合給定的條件,也就是符合給定條件的點必在軌跡上,這叫做軌跡的完備性(也叫做充分性)。

【軌跡方程】就是與幾何軌跡對應的代數描述。

一、求動點的軌跡方程的基本步驟

1、建立適當的坐標系,設出動點M的坐標;

2、寫出點M的集合;

3、列出方程=0;

4、化簡方程為最簡形式;

5、檢驗。

二、求動點的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關點法、參數法和交軌法等。

1、直譯法:直接將條件翻譯成等式,整理化簡后即得動點的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。

2、定義法:如果能夠確定動點的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。

3、相關點法:用動點Q的坐標x,y表示相關點P的坐標x0、y0,然后代入點P的坐標(x0,y0)所滿足的曲線方程,整理化簡便得到動點Q軌跡方程,這種求軌跡方程的方法叫做相關點法。

4、參數法:當動點坐標x、y之間的直接關系難以找到時,往往先尋找x、y與某一變數t的關系,得再消去參變數t,得到方程,即為動點的軌跡方程,這種求軌跡方程的方法叫做參數法。

5、交軌法:將兩動曲線方程中的參數消去,得到不含參數的方程,即為兩動曲線交點的軌跡方程,這種求軌跡方程的方法叫做交軌法。

直譯法:求動點軌跡方程的一般步驟

①建系——建立適當的坐標系;

②設點——設軌跡上的任一點P(x,y);

③列式——列出動點p所滿足的關系式;

④代換——依條件的特點,選用距離公式、斜率公式等將其轉化為關于X,Y的方程式,并化簡;

⑤證明——證明所求方程即為符合條件的動點軌跡方程。

精選高三數學知識點總結歸納三篇2

(1)先看“充分條件和必要條件”

當命題“若p則q”為真時,可表示為p=>q,則我們稱p為q的充分條件,q是p的必要條件。這里由p=>q,得出p為q的充分條件是容易理解的”。

但為什么說q是p的必要條件呢?

事實上,與“p=>q”等價的逆否命題是“非q=>非p”。它的意思是:若q不成立,則p一定不成立。這就是說,q對于p是必不可少的,因而是必要的。

(2)再看“充要條件”

若有p=>q,同時q=>p,則p既是q的充分條件,又是必要條件。簡稱為p是q的充要條件。記作p<=>q

(3)定義與充要條件

數學中,只有A是B的充要條件時,才用A去定義B,因此每個定義中都包含一個充要條件。如“兩組對邊分別平行的四邊形叫做平行四邊形”這一定義就是說,一個四邊形為平行四邊形的充要條件是它的兩組對邊分別平行。

顯然,一個定理如果有逆定理,那么定理、逆定理合在一起,可以用一個含有充要條件的語句來表示。

“充要條件”有時還可以改用“當且僅當”來表示,其中“當”表示“充分”。“僅當”表示“必要”。

(4)一般地,定義中的條件都是充要條件,判定定理中的條件都是充分條件,性質定理中的“結論”都可作為必要條件。

精選高三數學知識點總結歸納三篇3

1、數列的定義、分類與通項公式

(1)數列的定義:

①數列:按照一定順序排列的一列數。

②數列的項:數列中的每一個數。

(2)數列的分類:

分類標準類型滿足條件

項數有窮數列項數有限

無窮數列項數無限

項與項間的大小關系遞增數列an+1>an其中n∈N

遞減數列an+1

常數列an+1=an

(3)數列的通項公式:

如果數列{an}的第n項與序號n之間的關系可以用一個式子來表示,那么這個公式叫做這個數列的通項公式。

2、數列的遞推公式

如果已知數列{an}的首項(或前幾項),且任一項an與它的前一項an—1(n≥2)(或前幾項)間的關系可用一個公式來表示,那么這個公式叫數列的遞推公式。

3、對數列概念的理解

(1)數列是按一定“順序”排列的一列數,一個數列不僅與構成它的“數”有關,而且還與這些“數”的排列順序有關,這有別于集合中元素的無序性。因此,若組成兩個數列的數相同而排列次序不同,那么它們就是不同的兩個數列。

(2)數列中的數可以重復出現,而集合中的元素不能重復出現,這也是數列與數集的區別。

4、數列的函數特征

數列是一個定義域為正整數集N(或它的有限子集{1,2,3,…,n})的特殊函數,數列的通項公式也就是相應的函數解析式,即f(n)=an(n∈N)。

            主站蜘蛛池模板: 临泉县| 抚州市| 天柱县| 贡山| 河曲县| 甘南县| 杭锦旗| 瑞丽市| 和林格尔县| 江川县| 林甸县| 龙门县| 木兰县| 威海市| 兴国县| 松滋市| 疏勒县| 福州市| 青田县| 化德县| 双江| 防城港市| 江都市| 张家界市| 邵阳县| 高淳县| 通渭县| 巴林左旗| 正阳县| 乃东县| 平顺县| 抚远县| 成武县| 洪雅县| 外汇| 宜阳县| 康平县| 乌海市| 阿尔山市| 霍州市| 泾阳县|